Six Sigma Black Belt: Multivariate Tools and Nonparametric Tests

  • 7 Videos | 1h 22m 17s
  • Earns a Badge
Likes 9 Likes 9
In the Analyze phase of the DMAIC methodology, a Six Sigma team begins to analyze the root causes of the problems that it identified in the earlier stages. This analysis may require churning out huge volumes of data of different types. Sometimes this data is of a multivariate nature, meaning that many dependent and independent variables need to be considered simultaneously. As such, Six Sigma teams often use advanced multivariate tools to manage this type of data. Another set of advanced statistical analysis tools used in this phase is nonparametric tests. In conventional hypothesis tests – called parametric tests – a sample statistic is obtained to estimate a population parameter and hence requires a number of assumptions to be made about the underlying population, such as the normality of data. However, a nonparametric test is used when some of these assumptions, such as normality of data, cannot be safely made. This course deals with multivariate and categorical data analysis tools such as factor analysis, discriminant analysis, and multiple analysis of variance (MANOVA). The course also aims to familiarize learners with approaches for analyzing nonparametric data, particularly the use of Kruskal-Wallis and Mann-Whitney tests for validating hypotheses. This course is aligned with the ASQ Certified Six Sigma Black Belt certification exam and is designed to assist learners as part of their exam preparation. It builds on foundational knowledge that is taught in SkillSoft's ASQ-aligned Green Belt curriculum.

WHAT YOU WILL LEARN

  • discover the key concepts covered in this course
    interpret factor scores as part of factor analysis (FA)
    interpret the results of a discriminant analysis
    interpret the results of a multiple analysis of variance (MANOVA)
    identify statements that define nonparametric tests
    identify the limitations of nonparametric tests
  • recognize situational factors that call for a nonparametric method and choose the appropriate test, in a given scenario
    select the situation that is best suited for a Kruskal-Wallis test
    validate a hypothesis by performing a Kruskal-Wallis test
    recognize examples of business problems that are suitable for a Mann-Whitney test and identify the assumptions that must hold true
    recognize how the test statistic is calculated for a Mann-Whitney test
    validate a hypothesis by calculating the Mann-Whitney test statistic and interpreting the result

IN THIS COURSE

  • Playable
    1. 
    Six Sigma Black Belt: Multivariate Tools and Nonparametric Tests
    2m 5s
    UP NEXT
  • Playable
    2. 
    Factor Analysis (FA)
    11m 59s
  • Locked
    3. 
    Discriminant Analysis Interpretation
    8m 39s
  • Locked
    4. 
    Multiple Analysis of Variance (MANOVA)
    8m 15s
  • Locked
    5. 
    Introduction to Nonparametric Testing
    14m 36s
  • Locked
    6. 
    Kruskal-Wallis Testing
    10m 55s
  • Locked
    7. 
    Mann-Whitney Testing
    10m 19s

EARN A DIGITAL BADGE WHEN YOU COMPLETE THIS COURSE

Skillsoft is providing you the opportunity to earn a digital badge upon successful completion of this course, which can be shared on any social network or business platform

Digital badges are yours to keep, forever.