ARM System Developer's Guide: Designing and Optimizing System Software
- 10h 28m
- Andrew N. Sloss, Chris Wright, Dominic Symes
- Elsevier Science and Technology Books, Inc.
- 2004
Over the last ten years, the ARM architecture has become one of the most pervasive architectures in the world, with more than 2 billion ARM-based processors embedded in products ranging from cell phones to automotive braking systems. A world-wide community of ARM developers in semiconductor and product design companies includes software developers, system designers and hardware engineers. To date no book has directly addressed their need to develop the system and software for an ARM-based system. This text fills that gap.
This book provides a comprehensive description of the operation of the ARM core from a developer’s perspective with a clear emphasis on software. It demonstrates not only how to write efficient ARM software in C and assembly but also how to optimize code. Example code throughout the book can be integrated into commercial products or used as templates to enable quick creation of productive software.
The book covers both the ARM and Thumb instruction sets, covers Intel's XScale Processors, outlines distinctions among the versions of the ARM architecture, demonstrates how to implement DSP algorithms, explains exception and interrupt handling, describes the cache technologies that surround the ARM cores as well as the most efficient memory management techniques. A final chapter looks forward to the future of the ARM architecture considering ARMv6, the latest change to the instruction set, which has been designed to improve the DSP and media processing capabilities of the architecture.
Features
- No other book describes the ARM core from a system and software perspective.
- Author team combines extensive ARM software engineering experience with an in-depth knowledge of ARM developer needs.
- Practical, executable code is fully explained in the book
- Includes a simple embedded operating system.
About the Authors
Andrew Sloss received a B.Sc. in Computer Science from the University of Herefordshire (UK) in 1992 and was certified as a Chartered Engineer by the British Computer Society (C.Eng, MBCS). He has worked in the computer industry for over 16 years and has been involved with the ARM processor since 1987. He has gained extensive experience developing a wide range of applications running on the ARM processor. He designed the first editing systems for both Chinese and Egyptian Hieroglyphics executing on the ARM2 and ARM3 processors for Emerald Publishing (UK). Andrew Sloss has worked at ARM Inc. for over six years. He is currently a Technical Sales Engineer advising and supporting companies developing new products. He works within the U.S. Sales Organization and is based in Los Gatos, California.
Dominic Symes is currently a software engineer at ARM Ltd. in Cambridge, England, where he has worked on ARM-based embedded software since 1995. He received his B.A. and D.Phil. in Mathematics from Oxford University. He first programmed the ARM in 1989 and is particularly interested in algorithms and optimization techniques. Before joining ARM, he wrote commercial and public domain ARM software.
Chris Wright began his embedded systems career in the early 80s at Lockheed Advanced Marine Systems. While at Advanced Marine Systems he wrote small software control systems for use on the Intel 8051 family of microcontrollers. He has spent much of his career working at the Lockheed Palo Alto Research Laboratory and in a software development group at Dow Jones Telerate. Most recently, Chris Wright spent several years in the Customer Support group at ARM Inc., training and supporting partner companies developing new ARM-based products. Chris Wright is currently the Director of Customer Support at Ultimodule Inc. in Sunnyvale, California.
In this Book
-
ARM Embedded Systems
-
ARM Processor Fundamentals
-
Introduction to the ARM Instruction Set
-
Introduction to the Thumb Instruction Set
-
Efficient C Programming
-
Writing and Optimizing ARM Assembly Code
-
Optimized Primitives
-
Digital Signal Processing
-
Exception and Interrupt Handling
-
Firmware
-
Embedded Operating Systems
-
Caches
-
Memory Protection Units
-
Memory Management Units
-
The Future of the Architecture