Machine Learning: Machine Learning 2021 Intermediate

https://www.skillsoft.com/channel/machine-learning-ad645560-b5a3-11e7-9235-e7f6f925afa4?technologyandversion=3235871&expertiselevel=3235869 https://www.skillsoft.com/channel/machine-learning-ad645560-b5a3-11e7-9235-e7f6f925afa4?technologyandversion=3235876&expertiselevel=3235869 https://www.skillsoft.com/channel/machine-learning-ad645560-b5a3-11e7-9235-e7f6f925afa4?technologyandversion=3235883&expertiselevel=3235869 https://www.skillsoft.com/channel/machine-learning-ad645560-b5a3-11e7-9235-e7f6f925afa4?technologyandversion=3235870&expertiselevel=3235880 https://www.skillsoft.com/channel/machine-learning-ad645560-b5a3-11e7-9235-e7f6f925afa4?technologyandversion=3235871&expertiselevel=3235880 https://www.skillsoft.com/channel/machine-learning-ad645560-b5a3-11e7-9235-e7f6f925afa4?technologyandversion=3235872&expertiselevel=3235884 https://www.skillsoft.com/channel/machine-learning-ad645560-b5a3-11e7-9235-e7f6f925afa4?technologyandversion=3235873&expertiselevel=3235880 https://www.skillsoft.com/channel/machine-learning-ad645560-b5a3-11e7-9235-e7f6f925afa4?technologyandversion=3235874&expertiselevel=3235880 https://www.skillsoft.com/channel/machine-learning-ad645560-b5a3-11e7-9235-e7f6f925afa4?technologyandversion=3235875&expertiselevel=3235880 https://www.skillsoft.com/channel/machine-learning-ad645560-b5a3-11e7-9235-e7f6f925afa4?technologyandversion=3235876&expertiselevel=3235880 https://www.skillsoft.com/channel/machine-learning-ad645560-b5a3-11e7-9235-e7f6f925afa4?technologyandversion=3235877&expertiselevel=3235880 https://www.skillsoft.com/channel/machine-learning-ad645560-b5a3-11e7-9235-e7f6f925afa4?technologyandversion=3235878&expertiselevel=3235884 https://www.skillsoft.com/channel/machine-learning-ad645560-b5a3-11e7-9235-e7f6f925afa4?technologyandversion=3235879&expertiselevel=3235880 https://www.skillsoft.com/channel/machine-learning-ad645560-b5a3-11e7-9235-e7f6f925afa4?technologyandversion=3235881&expertiselevel=3235880 https://www.skillsoft.com/channel/machine-learning-ad645560-b5a3-11e7-9235-e7f6f925afa4?technologyandversion=3235883&expertiselevel=3235880 https://www.skillsoft.com/channel/machine-learning-ad645560-b5a3-11e7-9235-e7f6f925afa4?technologyandversion=6434264&expertiselevel=3235880 https://www.skillsoft.com/channel/machine-learning-ad645560-b5a3-11e7-9235-e7f6f925afa4?technologyandversion=3235882&expertiselevel=3235884
  • 9 Courses | 6h 45m 49s
  • 10 Books | 57h 10m
  • Includes Lab
  • 2 Courses | 2h 36m 8s
  • 3 Courses | 2h 47m 6s
  • 7 Books | 29h 5m
  • Includes Lab
  • 1 Course | 2h 3m 20s
  • 4 Books | 9h 45m
  • 3 Courses | 1h 59m 5s
  • 8 Books | 42h 33m
  • Includes Lab
  • 2 Courses | 1h 52m 16s
  • 19 Courses | 21h 33m 16s
  • 8 Books | 32h 53m
  • Includes Lab
  • 5 Courses | 6h 14m 38s
  • 7 Books | 20h 28m
  • Includes Lab
  • 5 Courses | 6h 29m 20s
  • 4 Books | 13h 57m
  • 2 Courses | 2h 39m 52s
  • 3 Courses | 2h 52m 59s
  • 6 Books | 51h 57m
  • 2 Courses | 1h 51m 10s
  • 18 Courses | 15h 16m 35s
  • 1 Book | 2h 25m
  • 8 Courses | 10h 7m 2s
  • 4 Books | 17h 18m
  • Includes Lab
  • 28 Courses | 30h 47m 51s
  • 9 Books | 34h 59m
  • Includes Lab
  • 1 Course | 1h 15m 30s
  • 2 Courses | 1h 52m 53s
Likes 288 Likes 288
 
Discover machine learning, where computers use algorithms to access data and learn to solve problems by themselves.

GETTING STARTED

Introduction to Machine Learning & Supervised Learning

  • Playable
    1. 
    What Is Machine Learning?
    3m 13s
    NOW PLAYING
  • Playable
    2. 
    Supervised Learning
    2m 35s
    UP NEXT

GETTING STARTED

Using BigML: An Introduction to Machine Learning & BigML

  • Playable
    1. 
    Course Overview
    2m 34s
    NOW PLAYING
  • Playable
    2. 
    Machine Learning Algorithms
    7m 11s
    UP NEXT

GETTING STARTED

Machine & Deep Learning Algorithms: Introduction

  • Playable
    1. 
    Course Overview
    1m 58s
    NOW PLAYING
  • Playable
    2. 
    Machine Learning Algorithms
    8m 39s
    UP NEXT

GETTING STARTED

Deep Learning with Keras

  • Playable
    1. 
    Course Overview
    1m 39s
    NOW PLAYING
  • Playable
    2. 
    Neural Networks
    7m 59s
    UP NEXT

GETTING STARTED

Research Topics in ML & DL

  • Playable
    1. 
    Course Overview
    2m 31s
    NOW PLAYING
  • Playable
    2. 
    Prevent Neural Networks from Overfitting
    2m 51s
    UP NEXT

GETTING STARTED

Advanced Functionality of Microsoft Cognitive Toolkit (CNTK)

  • Playable
    1. 
    Course Overview
    2m 26s
    NOW PLAYING
  • Playable
    2. 
    CNTK vs. Other Platforms
    4m
    UP NEXT

GETTING STARTED

Fundamentals of Sequence Model: Artificial Neural Network & Sequence Modeling

  • Playable
    1. 
    Course Overview
    1m 38s
    NOW PLAYING
  • Playable
    2. 
    Artificial Neural Network (ANN)
    3m 52s
    UP NEXT

GETTING STARTED

Machine Learning & Data Analytics

  • Playable
    1. 
    Machine Learning Concepts
    5m 34s
    NOW PLAYING
  • Playable
    2. 
    Machine Learning and Deep Learning
    5m 1s
    UP NEXT

GETTING STARTED

AI Fundamentals

  • Playable
    1. 
    Machine Learning and Artificial Intelligence Goals
    3m 50s
    NOW PLAYING
  • Playable
    2. 
    Essential Features of Artificial Intelligence
    3m 21s
    UP NEXT

GETTING STARTED

Using BigML: Building Supervised Learning Models

  • Playable
    1. 
    Course Overview
    2m 38s
    NOW PLAYING
  • Playable
    2. 
    Building an Ensemble Model
    8m 56s
    UP NEXT

GETTING STARTED

Bayesian Methods: Bayesian Concepts & Core Components

  • Playable
    1. 
    Course Overview
    1m 38s
    NOW PLAYING
  • Playable
    2. 
    Bayesian Probability and Statistical Inference
    7m 30s
    UP NEXT

GETTING STARTED

Keras - a Neural Network Framework

  • Playable
    1. 
    Course Overview
    1m 31s
    NOW PLAYING
  • Playable
    2. 
    The Keras Framework
    2m 28s
    UP NEXT

GETTING STARTED

AWS Certified Machine Learning: Data Engineering, Machine Learning, & AWS

  • Playable
    1. 
    Course Overview
    1m 8s
    NOW PLAYING
  • Playable
    2. 
    What Is Data Engineering?
    5m 40s
    UP NEXT

GETTING STARTED

TensorFlow: Introduction to Machine Learning

  • Playable
    1. 
    Course Overview
    2m 9s
    NOW PLAYING
  • Playable
    2. 
    Introduction to Machine Learning Algorithms
    8m 21s
    UP NEXT

GETTING STARTED

Model Management: Building Machine Learning Models & Pipelines

  • Playable
    1. 
    Course Overview
    1m 37s
    NOW PLAYING
  • Playable
    2. 
    Machine Learning Algorithms and Models
    4m 17s
    UP NEXT

GETTING STARTED

ML & Dimensionality Reduction: Performing Principal Component Analysis

  • Playable
    1. 
    Course Overview
    2m 12s
    NOW PLAYING
  • Playable
    2. 
    Linear Transformations of Vectors
    4m 45s
    UP NEXT

GETTING STARTED

Implementing AI With Amazon ML

  • Playable
    1. 
    Course Overview
    1m 28s
    NOW PLAYING
  • Playable
    2. 
    The Amazon ML Framework
    2m 4s
    UP NEXT

COURSES INCLUDED

Introduction to Machine Learning & Supervised Learning
Machine learning includes many different fields that focus on different problems. Explore what machine learning is and the fundamentals of supervised learning.
17 videos | 54m has Assessment available Badge
Supervised Learning Models
Supervised learning is one of the most popular techniques in machine learning. Explore supervised learning models and how to use them to solve problems.
13 videos | 39m has Assessment available Badge
Unsupervised Learning
Unsupervised learning can provide powerful insights on data without the need to annotate examples. Explore unsupervised learning, clustering, anomaly detection, and dimensional reduction.
12 videos | 31m has Assessment available Badge
Neural Networks
Due to recent advancements in processing, neural networks have become easier to train, which made them extremely popular. Explore neural networks and how to use them.
13 videos | 30m has Assessment available Badge
Convolutional and Recurrent Neural Networks
Some tasks aren't suitable for traditional neural networks and require specialized neural networks. Explore convolutional and recurrent neural networks and the types of problems they can solve.
13 videos | 39m has Assessment available Badge
Applying Machine Learning
Applying machine learning to problems can be a difficult task because of all the different models that are offered. Discover how to evaluate and select machine learning models and apply machine learning to a problem.
13 videos | 38m has Assessment available Badge
Building ML Training Sets: Introduction
  There are numerous options available to scale and encode features and labels in data sets to get the best out of machine learning (ML) algorithms. In this 10-video course, explore techniques such as standardizing, nomalizing, and one-hot encoding. Learners begin by learning how to use Pandas library to load a data set in the form of a CSV file and perform exploratory analysis on its features. Then use scikit-learn's Binarizer to transform the continuous data in a series to binary values; apply the MiniMaxScaler on a data set to get two similar columns to have the same range of values; and standardize multiple columns in data sets with scikit-learn's StandardScaler. Examine differences between the Normalizer and other scaling techniques, and learn how to represent values in a column as a proportion of the maximum absolute value by using the MaxAbScaler. Finally, discover how to use Pandas library to one-hot encode one or more features of your data set and distinguish between this technique and label encoding. The concluding exercise involves building ML training sets.
10 videos | 1h 13m has Assessment available Badge
Building ML Training Sets: Preprocessing Datasets for Linear Regression
This 7-video course helps learners discover how to implement machine learning scaling techniques such as standardizing and min-max scaling on continuous data and one-hot encoding on categorical features to improve performance of linear regression models. In the first tutorial, you will use Pandas library to load a CSV file into a data frame and analyze its contents by using Pandas and Matplotlib. You will then learn how to create a linear regression model with scikit-learn to predict the sale price of a house and evaluate this model by using metrics such as mean squared error and r-square. Next, learners will examine the application of min-max scaling on continuous fields and one-hot encoding on the categorical columns of a data set. Then analyze effects of preprocessing by recognizing benefits of scaling and encoding data sets by evaluating the performance of a regression model built with preprocessed data. Also, learn how to use scikit-learn's StandardScaler on a data set's continuous features and compare its effects with that of min-max scaling. The concluding exercise involves preprocessing data for regression.  
7 videos | 52m has Assessment available Badge
Building ML Training Sets: Preprocessing Datasets for Classification
In this course, learners can explore how to implement machine learning scaling techniques such as standardizing and normalizing on continuous data and label encoding on the target, in order to get the best out of machine learning algorithms. Examine dimensionality reduction by using Principal Component Analysis (PCA). Start this 6-video course by using Pandas library to load a CSV data set into a data frame and scale continuous features by using a standard scaler. You will then learn how to build and evaluate a support vector classifier in scikit-learn; use Pandas and Seaborn to generate a heat map; and spot the correlations between features in a data set. Discover how to apply the technique of PCA to reduce the number of dimensions in your input data and obtain the explained variance of each principal component. In the course's final tutorial, you will explore how to apply normalization and PCA on data sets and build a classification model with the principal components of scaled data. The concluding exercise involves processing data for classification.
6 videos | 45m has Assessment available Badge
SHOW MORE
FREE ACCESS

COURSES INCLUDED

Using BigML: An Introduction to Machine Learning & BigML
From self-driving cars to predicting stock prices, machine learning has an exciting range of applications. BigML, due to its ease of use, makes these algorithms widely accessible. This course outlines machine learning fundamentals and how these are applied in BigML. You'll start by examining various machine learning algorithm categories and the kinds of problems they're used to solve. You'll then investigate the classification problem and the process involved in training and evaluating such models. Next, you'll examine linear regression and how this can help predict a continuous value. Moving on, you'll explore the concept of unsupervised learning and its application in clustering, Principal Component Analysis (PCA), and generating associations. Finally, you'll recognize how all of this comes together when using BigML to significantly simplify the building and maintenance of your machine learning models.
11 videos | 1h 15m has Assessment available Badge
Using BigML: Getting Hands-on with BigML
BigML not only provides ease-of-use, but it also offers flexibility in how you work with your data. This course serves as a hands-on introduction to BigML and its vast array of features. You'll start by exploring the different ways data can be loaded into the platform and how these can be transformed into datasets to train and test a machine learning model. You'll gain practical experience with some of the tools available to help you better understand your data - from histograms and scatterplots to visualizations of value distribution. Moving on, you'll build a fundamental classification model, a decision tree, which takes employee details and predicts whether they'll stay or leave in the next year. Finally, you'll investigate some possible configurations for this model.
11 videos | 1h 20m has Assessment available Badge

COURSES INCLUDED

Machine & Deep Learning Algorithms: Introduction
Examine fundamentals of machine learning (ML) and how Pandas ML can be used to build ML models in this 7-video course. The working of Support Vector Machines to perform classification of data are also covered. Begin by learning about different kinds of machine learning algorithms, such as regression, classification, and clustering, as well as their specific applications. Then look at the process involved in learning relationships between input and output during the training phase of ML. This leads to an introduction to Pandas ML, and the benefits of combining Pandas, scikit-learn, and XGBoost into a single library to ease the task of building and evaluating ML models. You will learn about Support Vector Machines, which are a supervised machine learning algorithm, and how they are used to find a hyperplane to divide data points into categories. Learners then study the concept of overfitting in machine learning, and the problems associated with a model overfitted to training data. and how to mitigate the issue. The course concludes with an exercise in machine learning and classification.
7 videos | 47m has Assessment available Badge
Machine & Deep Learning Algorithms: Regression & Clustering
In this 8-video course, explore the fundamentals of regression and clustering and discover how to use a confusion matrix to evaluate classification models. Begin by examining application of a confusion matrix and how it can be used to measure the accuracy, precision, and recall of a classification model. Then study an introduction to regression and how it works. Next, take a look at the characteristics of regression such as simplicity and versatility, which have led to widespread adoption of this technique in a number of different fields. Learn to distinguish between supervised learning techniques such as regression and classifications, and unsupervised learning methods such as clustering. You will look at how clustering algorithms are able to find data points containing common attributes and thus create logical groupings of data. Recognize the need to reduce large data sets with many features into a handful of principal components with the PCA (Principal Component Analysis) technique. Finally, conclude the course with an exercise recalling concepts such as precision and recall, and use cases for unsupervised learning.
8 videos | 51m has Assessment available Badge
Machine & Deep Learning Algorithms: Data Preparation in Pandas ML
Classification, regression, and clustering are some of the most commonly used machine learning (ML) techniques and there are various algorithms available for these tasks. In this 10-video course, learners can explore their application in Pandas ML. First, examine how to load data from a CSV (comma-separated values) file into a Pandas data frame and prepare the data for training a classification model. Then use the scikit-learn library to build and train a LinearSVC classification model and evaluate its performance with available model evaluation functions. You will explore how to install Pandas ML and define and configure a ModelFrame, then compare training and evaluation in Pandas ML with equivalent tasks in scikit-learn. Learn how to build a linear regression model by using Pandas ML. Then evaluate a regression model by using metrics such as r-square and mean squared error, and visualize its performance with Matplotlib. Work with ModelFrames for feature extraction and encoding, and configure and build a clustering model with the K-Means algorithm, analyzing data clusters to determine unique characteristics. Finally, complete an exercise on regression, classification, and clustering.
10 videos | 1h 7m has Assessment available Badge

COURSES INCLUDED

Deep Learning with Keras
In this 19-video course, learners explore deep learning with Keras, including how to create and use neural networks with Keras for machine learning solutions. Begin with an overview of what neural networks are and their main components, followed by an introduction to Keras and its guiding principles. Observe how to configure Microsoft Cognitive Toolkit (CNTK) as your Keras backend; install and configure Keras; identify and work with both types of models available in Keras; and recognize features of commonly-used Keras layers and when to use them. Use Keras to make regression classifications and image classifications; Keras metrics to judge a model's performance; and Jupyter Notebooks with Keras. Next, download and load a data set from MNIST or CIFAR-10; explore data sets in Keras; prepare your data in Keras by defining input and target tensors, and compile the model in Keras. Then train and test your neural network; evaluate and score the performance of neural networks in Keras, and make predictions using your data set in Keras. The closing exercise involves using a neural network to make predictions.
19 videos | 2h 3m has Assessment available Badge

COURSES INCLUDED

Research Topics in ML & DL
This course explores research being done in machine learning and deep learning. Topics covered include neural networks and deep neural networks. First, learners examine how to prevent neural networks from overfitting. You will explore research on multilabel learning algorithms, multilabel classification, and multiple-output classifications, which are variants of the standard classification problem. Then examine deep learning algorithms, the enhanced performance of deeper neural networks that are more adept at automatic feature extraction. Next, ut facial alignment, regression tree ensembles, and deep features for scene recognition. Review ELM (Extreme Learning Machine), and how it is used to perform regression and multiclass classification.
13 videos | 47m has Assessment available Badge
Reinforcement Learning: Essentials
Explore machine learning reinforcement learning, along with the essential components of reinforcement learning that will assist in the development of critical algorithms for decisionmaking, in this 10-video course. You will examine how to achieve continuous improvement in performance of machines or programs over time, along with key differences between reinforcement learning and machine learning paradigm. Learners will observe how to depict the flow of reinforcement learning by using agent, action, and environment. Next, you will examine different scenarios of state changes and transition processes applied in reinforcement learning. Then examine the reward hypothesis, and learn to recognize the role of rewards in reinforcement learning. You will learn that all goals can be described by maximization of the expected cumulative rewards. Continue by learning the essential steps applied by agents in reinforcement learning to make decisions. You will explore the types of reinforcement learning environments, including deterministic, observable, discrete or continuous, and single-agent or multi-agent. Finally, you will learn how to install OpenAI Gym and OpenAl Universe.
10 videos | 33m has Assessment available Badge
Reinforcement Learning: Tools & Frameworks
This 9-video course explores how to implement machine learning reinforcement learning by examining the terminology, including agents, the environment, state, and policy. This course demonstrates how to implement reinforcement learning by using Keras and Python; how to ensure that you can build a model; and how to launch and use Ubuntu, and VI editor to do score calculations. First, learn the role of the Markov decision process in which the agent observes the environment, with output consisting of a reward and the next state, and then acts upon it. You will explore Q-learning, a model-free reinforcement learning technique, an asynchronous dynamic programming approach, and will learn about the Q-learning rule, and Deep Q-learning. Next, learn the steps to install TensorFlow for reinforcement learning, as well as framework, which is used for reinforcement learning provided by OpenAI. Then learn how to implement TensorFlow for reinforcement learning. Finally, you will learn to implement Q-learning using Python, and then utilize capabilities of OpenAl Gym and FrozenLake.
9 videos | 37m has Assessment available Badge

COURSES INCLUDED

Advanced Functionality of Microsoft Cognitive Toolkit (CNTK)
Microsoft Cognitive Toolkit provides powerful machine learning and deep learning algorithms for developing AI. Knowing which problems are easier to solve using Microsoft CNTK over other frameworks helps AI practitioners decide on the best software stack for a given application. In this course, you'll explore advanced techniques for working with Microsoft CNTK and identify which cases benefit most from MS CNTK. You'll examine how to load and use external data using CNTK and how to use its imperative and declarative APIs. You'll recognize how to carry out common AI development tasks using CNTK, such as working with epochs and batch sizes, model serialization, model visualization, feedforward neural networks, and machine learning model evaluation. Finally, you'll implement a series of practical AI projects using Python and MS CNTK.
15 videos | 53m has Assessment available Badge
Working With Microsoft Cognitive Toolkit (CNTK)
Microsoft Cognitive Toolkit (CNTK) is an open source framework for distributed deep learning suitable for commercial applications. It's primarily used to develop neural networks but can also be used for machine learning and cognitive computing. It supports multiple languages and can easily be used in the cloud. These factors make CNTK a good fit for various AI projects. In this course, you'll explore the basic concepts required to work with Microsoft CNTK. You'll compare other frameworks with CNTK, examine the process of creating machine learning and deep learning models with CNTK, and learn how it can be used with several cloud services. You'll move on to learn where to access CNTK documentation, community, and installation guidelines. Finally, you'll use CNTK to predict diabetes using retina scans.
16 videos | 58m has Assessment available Badge

COURSES INCLUDED

Fundamentals of Sequence Model: Artificial Neural Network & Sequence Modeling
Explore artificial neural networks (ANNs), their essential components, tools, and frameworks for their implementation in machine learning solutions. In this 9-video course, you will discover recurrent neural networks (RNNs) and how they are implemented. Key concepts covered here include perceptrons and the computational role they play in ANNs; learning features and characteristics of ANNs and how components are used to build a model; and learning prominent tools and frameworks used to implement sequence models and ANNs. Next, you will learn about sequence modeling as it pertains to language models; RNNs and their capabilities and components; and how to specify RNN types and their implementation features. Learners will then explore the concept of linear and nonlinear functions and classify how they are used with perceptrons; explore the concept of backpropagation and usage of backpropagation algorithm in neural networks; and examine the concept of activation functions and how linear and nonlinear activations are utilized in neural networks. Finally, you will see how to implement perceptrons with Python, and how to use modeling tools and architectures and applications of sequence models.
9 videos | 39m has Assessment available Badge
Fundamentals of Sequence Model: Language Model & Modeling Algorithms
In this 7-video course, learners can explore the concepts of language modeling, natural language processing (NLP), and sequence generation for NLP. Prominent machine learning modeling algorithms such as vanishing gradient problem, gated recurrent units (GRUs), and long short-term memory (LSTM) network are also covered. Key concepts studied in this course include language models, one of the most important parts of NLP. and how to implement NLP along with its essential components; learning the process and approach of generating sequence for NLP; and vanishing gradient problem implementation approaches to overcome the problem of taking longer times to achieve convergence. Then, learn about features and characteristics of GRUs used to resolve issues with vanishing gradient problems, and learn the problems and drawbacks of implementing short-term memory and LSTM as modeling solutions. In the concluding exercise, learners will review the essential components and prominent applications of language modeling and specify some of the solutions for vanishing gradient problems.
7 videos | 21m has Assessment available Badge
Build & Train RNNs: Neural Network Components
Explore the concept of artificial neural networks (ANNs) and components of neural networks, and examine the concept of learning and training samples used in supervised, unsupervised, and reinforcement learning in this 10-video course. Other topics covered in this course include network topologies, neuron activation mechanism, training sets, pattern recognition, and the need for gradient optimization procedure for machine learning. You will begin the course with an overview of ANN and its components, then examine the artificial network topologies that implement feedforward, recurrent, and linked networks. Take a look at the activation mechanism for neural networks, and the prominent learning samples that can be applied in neural networks. Next, compare supervised learning samples, unsupervised learning samples, and reinforcement learning samples, and then view training samples and the approaches to building them. Explore training sets and pattern recognition and, in the final tutorial, examine the need for gradient optimization in neural networks. The exercise involves listing neural network components, activation functions, learning samples, and gradient descent optimization algorithms.
10 videos | 40m has Assessment available Badge
Build & Train RNNs: Implementing Recurrent Neural Networks
Learners will examine the concepts of perception, layers of perception, and backpropagation, and discover how to implement recurrent neural network by using Python, TensorFlow, and Caffe2 in this 10-video course. Begin by taking a look at the essential features and processes of implementing perception and backpropagation in machine learning neural networks. Next, you will compare single-layer perception and multilayer perception and describe the need for layer management. You will learn about the steps involved in building recurrent neural network models; building recurrent neural networks with Python and TensorFlow; implementing long short-term memory (LSTM) by using TensorFlow, and building recurrent neural networks with Caffe2. Caffe is a deep learning framework. Building deep learning language models using Keras—an open source neural network library—will be explored in the final tutorial of the course. The concluding exercise entails implementing recurrent neural networks by using TensorFlow and Caffe2 and building deep learning language models by using Keras.
10 videos | 52m has Assessment available Badge
Convolutional Neural Networks: Fundamentals
Learners can explore the concepts of convolutional neural network (CNN); the underlying architecture, principles, and methods needed to build a CNN; and its implementation in a deep neural network. In this 12-video course, you will examine visual perception, and the ability to interpret the surrounding environment by using light in the visible spectrum. First, learn about CNN architecture; how to analyze the essential layers; and the impact of an initial choice of layers. Next, you will learn about nonlinearity in the first layer, and the need for several pooling techniques. Then learn how to implement a convolutional layer and sparse interaction. Examine the hidden layers of CNN, which are convolutional layers, ReLU (rectified linear unit) layers, or activation functions, the pooling layers, the fully connected layer, and the normalization layer. You will examine machine learning semantic segmentation to understand an image at the pixel level, and its implementation using Texton Forest and a random based classifier. Finally, this course examines Gradient Descent and its variants.
12 videos | 50m has Assessment available Badge
Convolutional Neural Networks: Implementing & Training
This course explores machine learning convolutional neural networks (CNNs), which are popular for implementation in image and audio processing. Learners explore AI (artificial intelligence), and the issues surrounding implementation, how to approach organizational talent and strategy, and how to prepare for AI architecture in this 8-video course. You will learn to use the Google Colab tool, and to implement image recognition classifier by using CNN, Keras, and TensorFlow. Next, learn to install and implement a model, and use it for image classification. You will examine the artificial neural network ResNet (residual neural network), and how it builds on constructs known from pyramidal cells and cerebral cortex. You will also study PyTorch, an open-source machine learning library that enables fast, flexible experimentation, and efficient production through a hybrid front end, and learn to use the PyTorch ecosystem tool to develop and implement neural networks. Finally, this course demonstrates how to create a data set by using Training CNN by using PyTorch to categorize garments.
8 videos | 33m has Assessment available Badge
Getting Started with Neural Networks: Biological & Artificial Neural Networks
Learners can explore fundamental concepts of biological and artificial neural networks, computational models that can be implemented with neural networks, and how to implement neural networks with Python, in this 12-video course. Begin with a look at characteristics of machine learning biological neural networks that inspired artificial neural networks. Then explore components of biological neural networks and the signal processing mechanism. Next, take a look at the essential components of the structure of artificial neural networks; learn to recognize the layered architecture of neural networks; and observe how to classify various computational models that can be implemented by using neural networks paradigm. Examine neurons connectivity, by describing the interconnection between neurons involving weights and fixed weights. This leads on to threshold functions in neural networks and the basic logic gates of AND, OR, and XNOR. Implement neural networks by using Python and the core libraries provided by Python for neural networks; create a neural network model using Python, Keras, and TensorFlow, and finally, view prominent neural network use cases. The concluding exercise involves implementing neural networks.
12 videos | 1h 3m has Assessment available Badge
Getting Started with Neural Networks: Perceptrons & Neural Network Algorithms
Discover the basics of perceptrons, including single- layer and multilayer, and the roles of linear and nonlinear functions in this 10-video course. Learners will explore how to implement perceptrons and perceptron classifiers by using Python for machine learning solutions. Key concepts covered in this course include perceptrons, single-layer and multilayer perceptrons, and the computational role they play in artificial neural networks; learning the algorithms that can be used to implement single-layer perceptron training models; and exploring multilayer perceptrons and illustrating the algorithmic difference from single-layer perceptrons. Next, you will learn to classify the role of linear and nonlinear functions in perceptrons; learn how to implement perceptrons by using Python; and learn approaches and benefits of using the backpropagation algorithm in neural networks. Then learn the uses of linear and nonlinear activation functions in artificial neural networks; learn to implement a simple perceptron classifier using Python; and learn the benefits of using the backpropagation algorithm in neural networks and implement perceptrons and perceptron classifiers by using Python.
10 videos | 48m has Assessment available Badge
Training Neural Networks: Implementing the Learning Process
In this 13-video course, learners can explore how to work with machine learning frameworks and Python to implement training algorithms for neural networks. You will learn the concept and characteristics of perceptrons, a single layer neural network that aggregates the weighted sum of inputs, and returns either zero or one, and neural networks. You will then explore some of the prominent learning rules that to apply in neural networks, and the concept of supervised and unsupervised learning. Learn several types of neural network algorithms, and several training methods. Next, you will learn how to prepare and curate data by using Amazon SageMaker, and how to implement an artificial neural network training process using Python, and other prominent and essential learning algorithms to train neural networks. You will learn to use Python to train artificial neural networks, and how to use Backpropagation in Keras to implement multilayer perceptrons or neural networks. Finally, this course demonstrates how to implement regularization in multilayer perceptrons by using Keras.
13 videos | 1h 44m has Assessment available Badge
Training Neural Networks: Advanced Learning Algorithms
This 15-video course explores how to design advanced machine learning algorithms by using training patterns, pattern association, the Hebbian learning rule, and competitive learning. First, learners examine the concepts and characteristics of online and offline training techniques in implementing artificial neural networks, and different training patterns in teaching inputs that are used in implementing artificial neural networks. You will learn to manage training samples, and how to use Google Colab to implement overfitting and underfitting scenarios by using baseline models. You will examine regularization techniques to use in training artificial neural networks. This course then demonstrates how to train previously-built neural network models using Python, and the prominent training algorithms to implement pattern associations. Next, learn the architecture and algorithm associated with learning vector quantization; the essential phases involved in implementing Hebbian learning; how to implement Hebbian learning rule using Python; and the steps involved in implementing competitive learning. Finally, you will examine prominent techniques to use to optimize neural networks, and how to debug neural networks.  
15 videos | 1h 47m has Assessment available Badge
Building Neural Networks: Development Principles
Explore essential machine learning components used to learn, train, and build neural networks and prominent clustering and classification algorithms in this 12-video course. The use of hyperparameters and perceptrons in artificial neuron networks (ANNs) is also covered. Learners begin by studying essential ANN components required to process data, and also different paradigms of learning used in ANN. Examine essential clustering techniques that can be applied on ANN, and the roles of the essential components that are used in building neural networks. Next, recall the approach of generating deep neural networks from perceptrons; learn how to classify differences between models and hyperparameters and specify the approach of tuning hyperparameters. You will discover types of classification algorithm that can be used in neural networks, and features of essential deep learning frameworks for building neural networks. Explore how to choose the right neural network framework for neural network implementations from the perspective of usage scenarios and fitment model, and define computational models that can be used to build neural network models. The concluding exercise concerns ANN training and classification.
12 videos | 1h 25m has Assessment available Badge
Building Neural Networks: Artificial Neural Networks Using Frameworks
This 13-video course helps learners discover how to implement various neural networks scenarios by using Python, Keras, and TensorFlow for machine learning. Learn how to optimize, tune, and speed up the processes of artificial neural networks (ANN) and how to implement predictions with ANN is also covered. You will begin with a look at prominent building blocks involved in building a neural network, then recalling the concept and characteristics of evolutionary algorithms, gradient descent, and genetic algorithms. Learn how to build neural networks with Python and Keras for classification with Tensorflow as the backend. Discover how to build neural networks by using PyTorch; implement object image classification using neural network algorithms; and define and illustrate the use of learning rates to optimize deep learning. Examine various parameters and approaches of optimizing neural network speed; learn how to select hyperparameters and tune for dense networks by using Hyperas; and build linear models with estimators by using the capabilities of TensorFlow. Explore predicting with neural networks, temporal prediction optimization, and heterogenous prediction optimization. The concluding exercise involves building neural networks.
13 videos | 2h has Assessment available Badge
Convo Nets for Visual Recognition: Filters and Feature Mapping in CNN
In this 13-video course, you will explore the capabilities and features of convolutional networks for machine learning that make it a recommended choice for visual recognition implementation. Begin by examining the architecture and the various layers of convolutional networks, including pooling layer, convo layer, normalization layer, and fully connected layer, and defining the concept and types of filters in convolutional networks along with their usage scenarios. Learn about the approach to maximizing filter activation with Keras; define the concept of feature map in convolutional networks and illustrate the approach of visualizing feature maps; and plot the map of the first convo layer for given images, then visualize the feature map output from every block in the visual geometry group (VGG) model. Look at optimization parameters for convolutional networks, and hyperparameters for tuning and optimizing convolutional networks. Learn about applying functions on pooling layer; pooling layer operations; implementing pooling layer with Python, and implementing convo layer with Python. The concluding exercise involves plotting feature maps.
13 videos | 1h 12m has Assessment available Badge
Convo Nets for Visual Recognition: Computer Vision & CNN Architectures
Learners can explore the machine learning concept and classification of activation functions, the limitations of Tanh and the limitations of Sigmoid, and how these limitations can be resolved using the rectified linear unit, or ReLU, along with the significant benefits afforded by ReLU, in this 10-video course. You will observe how to implement ReLU activation function in convolutional networks using Python. Next, discover the core tasks used in implementing computer vision, and developing CNN models from scratch for object image classification by using Python and Keras. Examine the concept of the fully-connected layer and its role in convolutional networks, and also the CNN training process workflow and essential elements that you need to specify during the CNN training process. The final tutorial in this course involves listing and comparing the various convolutional neural network architectures. In the concluding exercise you will recall the benefits of applying ReLU in CNNs, list the prominent CNN architectures, and implement ReLU function in convolutional networks using Python.
10 videos | 52m has Assessment available Badge
ConvNets: Introduction to Convolutional Neural Networks
Explore convolutional neural networks, their different types, and prominent use cases for machine learning, in this 10-video course. Learners will study the different layers and parameters of convolutional neural networks and their roles in implementing and addressing image recognition and classification problems. Key concepts covered in this course include the working mechanisms of convolutional neural networks, and the different types of convolutional neural networks that we can implement; and problems associated with computer vision, along with the prominent techniques to manage them.  Next, you will learn about the role of neural networks and convolutional neural networks in implementing and addressing image recognition and classification problems; observe the prominent layers and parameters of convolutional neural networks for image classification; and learn to see the convolutional layer from a mathematical perspective, while recognizing the mathematical elements that enter into the convolution operations. Finally, learners will be shown how to build a convolutional neural network for image classification by using Python.
10 videos | 1h 4m has Assessment available Badge
ConvNets: Working with Convolutional Neural Networks
Learners can explore the prominent machine learning elements that are used for computation in artificial neural networks, the concept of edge detection, and common algorithms, as well as convolution and pooling operations, and essential rules of filters and channel detection, in this 10-video course. Key concepts covered here include the architecture of neural networks, along with essential elements used for computations by focusing on Softmax classifier; how to work with ConvNetJS as a Javascript library and train deep learning models; and learning about the edge detection method, including common algorithms that are used for edge detection. Next, you will examine the series of convolution and pooling operations used to detect features; learn the involvement of math in convolutional neural networks and essential rules that are applied on filters and channel detection; and learn principles of convolutional layer, activation function, pooling layer, and fully-connected layer. Learners will observe the need for activation layers in convolutional neural networks and compare prominent activation functions for deep neural networks; and learn different approaches to improve convolution neural networks and machine learning systems.
10 videos | 46m has Assessment available Badge
Improving Neural Networks: Neural Network Performance Management
In this 12-video course, learners can explore machine learning problems that can be addressed with hyperparameters, and prominent hyperparameter tuning methods, along with problems associated with hyperparameter optimization. Key concepts covered here include the iterative workflow for machine learning problems, with a focus on essential measures and evaluation protocols; steps to improve performance of neural networks, along with impacts of data set sizes on neural network models and performance estimates; and impact of the size of training data sets on quality of mapping function and estimated performance of a fit neural network model. Next, you will learn the approaches of identifying overfitting scenarios and preventing overfitting by using regularization techniques; learn the impact of bias and variances on machine learning algorithms, and recall the approaches of fixing high bias and high variance in data sets; and see how to trade off bias variance by building and deriving an ideal learning curve by using Python. Finally, learners will observe how to test multiple models and select the right model by using Scikit-learn.
12 videos | 2h 1m has Assessment available Badge
Improving Neural Networks: Loss Function & Optimization
Learners can explore the concept of loss function, the different types of Loss function and their impact on neural networks, and the causes of optimization problems, in this 10-video course. Examine alternatives to optimization, the prominent optimizer algorithms and their associated properties, and the concept of learning rates in neural networks for machine learning solutions. Key concepts in this course include learning loss function and listing various types of loss function; recognizing impacts of the different types of loss function on neural networks models; and learning how to calculate loss function and score by using Python. Next, learners will learn to recognize critical causes of optimization problems and essential alternatives to optimization; recall prominent optimizer algorithms, along with their properties that can be applied for optimization; and how to perform comparative optimizer analysis using Keras. Finally, discover the relevance of learning rates in optimization and various approaches of improving learning rates; and learn the approach of finding learning rate by using RMSProp optimizer.
10 videos | 1h 7m has Assessment available Badge
Improving Neural Networks: Data Scaling & Regularization
Explore how to create and optimize machine learning neural network models, scaling data, batch normalization, and internal covariate shift. Learners will discover the learning rate adaptation schedule, batch normalization, and using L1 and L2 regularization to manage overfitting problems. Key concepts covered in this 10-video course include the approach of creating deep learning network models, along with steps involved in optimizing networks, including deciding size and budget; how to implement the learning rate adaptation schedule in Keras by using SGD and specifying learning rate, epoch, and decay using Google Colab; and scaling data and the prominent data scaling methods, including data normalization and data standardization. Next, you will learn the concept of batch normalization and internal covariate shift; how to implement batch normalization using Python and TensorFlow; and the steps to implement L1 and L2 regularization to manage overfitting problems. Finally, observe how to implement gradient descent by using Python and the steps related to library import and data creation.
10 videos | 1h 41m has Assessment available Badge
SHOW MORE
FREE ACCESS

COURSES INCLUDED

Machine Learning & Data Analytics
Explore critical machine learning (ML) and deep learning concepts and the various categorizations of algorithms and their implementations using Python.
10 videos | 1h 8m has Assessment available Badge
Supervised, Unsupervised & Deep Learning
Discover how to implement various supervised and unsupervised algorithms of machine learning using Python, with the primary focus of clustering and classification.
10 videos | 1h 35m has Assessment available Badge
Deep Learning & Neural Network Implementation
Discover how to implement neural network with data sampling and workflow models using scikit-learn, and explore the pre and post model approaches of implementing machine learning workflows.
10 videos | 1h 6m has Assessment available Badge
Implementing ML Algorithm Using scikit-learn
Discover how to implement data classification using various techniques, including Bayesian, and learn to apply various search implementations with Python and scikit-learn.
10 videos | 1h 17m has Assessment available Badge
Implementing Robotic Process Automation
Discover how to implement Robotic Process Automation (RPA) using Python, and explore various RPA frameworks with the practical implementation of UiPath.
10 videos | 1h 7m has Assessment available Badge
SHOW MORE
FREE ACCESS

COURSES INCLUDED

AI Fundamentals
Discover the fundamental concepts of the technologies driving artificial Intelligence (AI).
10 videos | 1h 8m has Assessment available Badge
Machine Learning Implementation
Explore the various machine learning techniques and implementations using Java libraries, and learn to identify certain scenarios where you can implement algorithms.
12 videos | 1h 32m has Assessment available Badge
Neural Network & Neuroph Framework
Discover the essential features and capabilities of Neuroph framework and Neural Networks, and also how to work with and implement Neural Networks using Neuroph framework.
16 videos | 1h 55m has Assessment available Badge
Neural Network & NLP Implementation
Discover how to implement advanced neural network using DL4j and explore the concept of NLP and its implementation using OpenNLP Java library.
11 videos | 1h 1m has Assessment available Badge
Expert Systems & Reinforcement Learning
Explore the concepts of expert system along with its Implementation using Java based frameworks, and examine the implementation and usages of ND4J and Arbiter to facilitate optimization.
12 videos | 52m has Assessment available Badge
SHOW MORE
FREE ACCESS

COURSES INCLUDED

Using BigML: Building Supervised Learning Models
The versatility of BigML allows you to build supervised learning models without much complexity. In this course, you'll practice constructing a selection of supervised learning models using BigML. You'll start by building an ensemble of decision trees to perform binary classification. Next, you'll build a linear regression model to predict the values of homes in a particular region. You'll then train and evaluate a logistic regression model to illustrate how it can be used to solve similar problems to those solved using ensemble methods. Another BigML capability you'll explore is building a time series plot to make various forecasts. In each demonstration, you'll delve into some optional configurations for the model being trained. Lastly, you'll use the OptiML feature to find the optimal model for your data.
14 videos | 1h has Assessment available Badge
Using BigML: Unsupervised Learning
BigML includes various unsupervised learning models used to gain insights into your data. These insights can help make pivotal business decisions or act as a starting point to build supervised learning models. In this course, you'll build several unsupervised learning models and analyze the results they produce. You'll start by creating clusters from a dataset and examining how data points within a cluster share similarities. You'll move on to uncover associations in a dataset about items purchased on an e-commerce platform. Next, you'll apply topic modeling to extract the topics discussed in a collection of texts. Following this, you'll transform a dataset containing multiple fields into a handful of principal components using Principal Component Analysis, or PCA. Finally, you'll explore the detection of anomalies in your dataset.
9 videos | 1h 3m has Assessment available Badge

COURSES INCLUDED

Bayesian Methods: Bayesian Concepts & Core Components
This 11-video course explores the machine learning concepts of Bayesian methods and the implementation of Bayes' theorem and methods in machine learning. Learners can examine Bayesian statistics and analysis with a focus on probability distribution and prior knowledge distribution. Begin with a look at the concept of Bayesian probability and statistical inference, then move on to the concept of Bayesian theorem and its implementation in machine learning. Next, learn about the role of probability and statistics in Bayesian analysis from the perspective of frequentist probability and subjective probability paradigms. You will examine standard probability, continuous distribution, and discrete distribution, and recall the essential elements of Bayesian statistics including prior distribution, likelihood function, and posterior inference. Recognize the implementation of prominent Bayesian methods including inference, statistical modeling, influence of prior belief, and statistical graphics. Describe prior knowledge and compare the differences between non-informative prior distribution and informative prior distribution. The steps involved in Bayesian analysis, including modeling data, deciding prior distribution, likelihood construction, and posterior distribution are also covered. The concluding exercise focuses on Bayesian statistics and analysis.
11 videos | 1h 4m has Assessment available Badge
Implementing Bayesian Model and Computation with PyMC
Learners can examine the concept of Bayesian learning and the different types of Bayesian models in this 12-video course. Discover how to implement Bayesian models and computations by using different approaches and PyMC for your machine learning solutions. Learners start by exploring critical features of and difficulties associated with Bayesian learning methods, and then take a look at defining the Bayesian model and classifying single-parameter, multiparameter, and hierarchical Bayesian models. Examine the features of probabilistic programming and learn to list the popular probabilistic programming languages. You will look at defining Bayesian models with PyMC and arbitrary deterministic function and generating posterior samples with PyMC models. Next, learners recall the fundamental activities involved in the PyMC Bayesian data analysis process, including model checking, evaluation, comparison, and model expansion. Delve into the computation methods of Bayesian, including numerical integration, distributional approximation, and direct simulation. Also, look at computing with Markov chain simulation, and the prominent algorithms that can be used to find posterior modes based on the distribution approximation. The concluding exercise focuses on Bayesian modeling with PyMC.
12 videos | 52m has Assessment available Badge
Bayesian Methods: Advanced Bayesian Computation Model
This 11-video course explores advanced Bayesian computation models, as well as how to implement Bayesian modeling with linear regression, nonlinear, probabilistic, and mixture models. In addition, learners discover how to implement Bayesian inference models with PyMC3. First, learn how to build and implement Bayesian linear regression models by using Python for machine learning solutions. Examine prominent hierarchical linear models from the perspective of regression coefficients. Then view the concept of probability models and use of Bayesian methods for problems with missing data. You will discover how to build probability models by using Python, and examine coefficient shrinkage with nonlinear models, nonparametric models, and multivariate regression from nonlinear models. Examine fundamental concepts of Gaussian process models; the approaches of classification with mixture models and regression with mixture models; and essential properties of Dirichlet process models. Finally, learn how to implement Bayesian inference models in Python with PyMC3. The concluding exercise recalls hierarchical linear models from the perspective of regression coefficients, and asks learners to describe the approach of working with generalized linear models, and implement Bayesian inference by using PyMC3.
11 videos | 55m has Assessment available Badge

COURSES INCLUDED

Keras - a Neural Network Framework
Keras is a deep learning package suitable for beginners. Although it is applied in multiple standard deep learning use cases, it is also used by commercial-grade products. To facilitate this, Keras provides additional, flexible options on top of the well-known Sequential API, which allow you to customize and create various neural networks. To utilize this, however, requires a more in-depth knowledge of the Keras framework. In this course, you'll develop the core skills needed to work with the Keras framework. You'll explore the advantages and disadvantages of using Keras over other frameworks, and examine how Keras can be used with TensorFlow. You'll move on to recognize how Keras is used for machine learning and deep learning. Finally, you'll implement two deep learning projects using the Keras framework.
15 videos | 54m has Assessment available Badge
Working With the Keras Framework
Keras provides a quick way to implement, train, and evaluate robust neural networks in Python. Using Keras for AI development for prototyping AI is standard practice and AI practitioners need to know why and how to use Keras for particular AI implementations. In this course, you'll explore advanced techniques for working with the Keras framework. You'll recognize how Keras is different from other AI frameworks and identify cases in which it is advantageous to use Keras. You'll examine the functionality of the Keras Sequential model and Functional API and the role of multiple deep learning layers present in Keras. Finally, you will work with practical AI projects developed using Keras and troubleshoot common problems related to model training and evaluation.
16 videos | 57m has Assessment available Badge

COURSES INCLUDED

AWS Certified Machine Learning: Data Engineering, Machine Learning, & AWS
Machine learning (ML) has become indispensable across all industries. With staggering amounts of data generated globally every second, it's impossible to make sense of it without using such advanced data analytics. The AWS Certified Machine Learning - Specialty certification is one of the most coveted yet challenging certs a data engineer or scientist can get. To pass the associated exam, candidates must demonstrate knowledge of various machine learning concepts and the ability to solve real-world business challenges. Use this course to prepare for acquiring this valuable certification. Get to grips with key data engineering and machine learning terminology, concepts, tools, tasks, and workflows. Then, dive into how the AWS Machine Learning platform is used for real-world applications. Upon completing this course, you'll recognize key ML concepts and how to prepare datasets, develop ML models, and optimize models for improved predictive accuracy.
12 videos | 40m has Assessment available Badge
AWS Certified Machine Learning: Amazon S3 Simple Storage Service
Amazon Simple Storage Service (S3) is widely used for many machine learning applications. Using Amazon S3, you can quickly and easily run machine learning algorithms on large databases using remote machines. In this course, you'll explore the various data formats Amazon S3 uses for machine learning pipelines. You'll then examine several Amazon S3 services in detail, looking at their use cases, workflows, and features. You'll also learn about the vital Amazon S3 functionalities related to security and access management and data storage, archiving, and analytics. When you've finished this course, you'll be able to outline how Amazon S3 is used for machine learning tasks, taking you one step closer to being fully prepared for the AWS Certified Machine Learning – Specialty exam.
12 videos | 27m has Assessment available Badge
AWS Certified Machine Learning: Data Movement
As the amount of data being collected has exploded, it has become crucial for businesses to rapidly access, transform, and analyze data. From the traditional batch processing to the ever-evolving real-time data analytics, AWS has various tools to handle large volumes of data and perform real-time analytics to ensure high-service uptimes and personalize recommendations. Explore various Amazon tools like AWS Glue, AWS Data Catalog, and AWS Kinesis using this course. These tools are commonly used for data movement. This course will also help you understand how these processes function on the AWS platform and familiarize you with the data movement workflows. Data movement and processing are at the core of any data analysis, and after completing this course, you'll be familiar with multiple tools and approaches that can be used to conveniently transform raw data, combine databases, and stream data, Further, you'll be able to prepare for the AWS Certified Machine Learning - Specialty certification.
14 videos | 34m has Assessment available Badge
AWS Certified Machine Learning: Data Pipelines & Workflows
Creating a data pipeline is essential to making any data-related product. AWS Data Pipeline, AWS Batch, and AWS Workflow frameworks allow you to manage data using ETL data management across various AWS tools and services, making AWS a perfect platform for combining data from multiple sources. In this course, you'll learn how to automate data movement and transformation processes on AWS and define data-driven pipelines and workflows. Investigating how data pipelines enable seamless, scalable, and fault-tolerant data transfer between AWS storage and computational tools helps illuminate the full potential of AWS in machine learning. By the end of this course, you'll have a working knowledge of the most common use cases of AWS Data Pipeline, AWS Batch, and AWS Workflow, bringing you closer to being fully prepared for the AWS Certified Machine Learning - Specialty certification exam.
12 videos | 40m has Assessment available Badge
AWS Certified Machine Learning: Jupyter Notebook & Python
Exploring and analyzing data to comprehend its underlying characteristics and patterns becomes increasingly vital as vaster amounts are collected. This is key in formulating the most suitable problems, the solving of which helps achieve real-world business goals. Use this course to get your head around the programming fundamentals for machine learning in AWS, which form the basis for most data exploratory steps on the AWS platform. Explore various Python packages used in machine learning and data analysis and become familiar with Jupyter Notebook's fundamental concepts. Then, work with Python and Jupyter Notebook to create a machine learning model. When you're done, you'll be able to use Jupyter Notebook and various Python packages in machine learning and data analysis. You'll be one step closer to being prepared for the AWS Certified Machine Learning - Specialty certification exam.
13 videos | 38m has Assessment available Badge
AWS Certified Machine Learning: Data Analysis Fundamentals
Data Analysis is a primary method for deriving valuable insight from raw and unstructured data. The appropriate application of data analysis techniques is vital in deriving only the relevant insight and factual knowledge from available data. Picking the correct data distribution or visualization technique can become critical to the overall data analysis results. Using this course, become familiar with the core foundations of data – the essential ground for any data analysis and machine learning operation. Examine the various types of data that exist, inherent data distributions, both traditional and modern methods of visualizing data, and how time series analysis works. When you've completed this course, you'll be able to describe the core concepts of data analysis and implement some valuable visualization and analysis techniques using Python. This course will prepare you for the AWS Certified Machine Learning - Specialty certification exam.
12 videos | 34m has Assessment available Badge
AWS Certified Machine Learning: Athena, QuickSight, & EMR
Amazon offers a wide range of services that help enhance AWS workflows, making it much easier to create automated data processing and machine learning pipelines. Use this course to get to grips with some of these services. Explore how Amazon Athena is used for querying data and how Amazon QuickSight integrates with Athena to help decision-makers analyze data and interpret information in an interactive visual environment. Then, get hands-on practice working with both tools. Moving along, learn how Amazon EMR is used to process large amounts of data and investigate its integrations with various Apache frameworks, such as Hadoop and Spark. When you're done, you'll know how to use Amazon services to automate machine learning processes, further preparing you for the AWS Certified Machine Learning – Specialty certification exam.
13 videos | 36m has Assessment available Badge
AWS Certified Machine Learning: Feature Engineering Overview
Feature engineering is key in extracting the right attributes from raw incoming data, which is fundamental in building reliable ML algorithms. Amazon SageMaker, a fully managed machine learning studio on AWS, provides feature engineering functionality and many other machine-learning-related tasks. Use this course to explore fundamental feature engineering concepts and learn how to use Amazon SageMaker for feature engineering tasks. Work with the various tools available in SageMaker for preparing data for ML models, such as Ground Truth (for labeling data) and Feature Store (for storing, retrieving, and sharing features). Moving along, investigate various deficiencies, such as missing values, imbalance, and outliers, in real-world data and learn how to address these challenges. Upon completion, you'll be able to carry out feature engineering tasks efficiently using Amazon SageMaker, further preparing you for the AWS Certified Machine Learning – Specialty certification exam.
12 videos | 34m has Assessment available Badge
AWS Certified Machine Learning: Feature Engineering Techniques
Raw data is typically not perfect for developing effective machine learning (ML) models. Often, it needs to be processed using various feature engineering techniques to make it more suitable for building accurate and optimized ML models. Take this course to learn about techniques that help prepare the data to be compatible and improve the performance of machine learning models. Investigate techniques that are used to improve data usability, such as one-hot encoding, binning, transformations, scaling, and shuffling. You will also learn about the importance and usage of text feature engineering and major workflows in the AWS environment. After completing this course, you'll be able to implement feature engineering techniques using AWS workflows, further preparing you for the AWS Certified Machine Learning – Specialty certification exam.
13 videos | 28m has Assessment available Badge
AWS Certified Machine Learning: Problem Framing & Algorithm Selection
Problem framing and algorithm selection is the most important part of any machine learning (ML) project. ML engineers have to apply appropriate techniques that will result in expected prediction behavior. It is important to fully understand a particular task and choose among all the available methods and toolkits before implementing a machine learning project. Use this course to learn more about the ML mindset, discover how goal-oriented business problems can be formulated as machine learning problems, and describe factors that drive the selection of the correct algorithm for a particular scenario. The course will also help you refresh important ML concepts and terminologies. After completing this course, you'll be able to implement machine learning solutions to solve business problems, further preparing you for the AWS Certified Machine Learning – Specialty certification exam.
12 videos | 1h 12m has Assessment available Badge
AWS Certified Machine Learning: Machine Learning in SageMaker
Amazon SageMaker provides broad-set capabilities for machine learning (ML) as it helps to prepare, train, and quickly deploy ML models. Use this course to learn more about the basic capabilities of SageMaker and work with it to implement solutions to various machine learning problems. Explore features and functionalities of SageMaker through practical demos and discover how to implement hyperparameter tuning. This course will also help you explore algorithms in SageMaker, such as linear learner, XGBoost, object detection, and semantic segmentation. After completing this course, you'll be able to train and tune a range of algorithms in order to solve simple classification tasks for natural language processing (NLP) and computer vision.
12 videos | 1h 32m has Assessment available Badge
AWS Certified Machine Learning: ML Algorithms in SageMaker
Amazon SageMaker is a comprehensive machine learning (ML) toolkit that provides a broad range of functions and can be used for multiple use cases and tasks, making it an ultimate package for ML. Dive deeper into SageMaker’s built-in algorithms for solving problems, such as time series forecast, clustering, and anomaly detection through this course. Examine various functionalities available in Amazon SageMaker and learn how to implement different ML algorithms. Once you have completed this course, you'll be able to use SageMaker's machine learning algorithms for your business case and be a step further in preparing for the AWS Certified Machine Learning – Specialty certification exam.
15 videos | 1h 43m has Assessment available Badge
AWS Certified Machine Learning: Advanced SageMaker Functionality
Amazon SageMaker can be used with multiple other frameworks and toolkits to precisely define machine learning (ML) algorithms and train models and is not limited to a specific set of algorithms for ML. SageMaker also provides a wide range of tools that can be used for incremental training, distributed training, debugging, or explainability. Use this course to learn about advanced SageMaker functionality, including supported frameworks, Amazon EMR, and autoML. You'll also gain hands-on experience in using new features, such as SageMaker Experiments, SageMaker Debugger, Bias Detection, and Explainability. Once you have finished this course, you'll have the skills and knowledge to implement SageMaker's advanced functionalities. Further, you'll be a step closer to preparing for the AWS Certified Machine Learning – Specialty certification exam.
13 videos | 1h 23m has Assessment available Badge
AWS Certified Machine Learning: AI/ML Services
Amazon offers a variety of high-level no-code services for specialized machine learning (ML) tasks. These services are primarily used to implement complex pre-built algorithms for using ML with textual and visual information. Use this course to learn more about these services. Use this course to explore services, such as Amazon Kendra, Transcribe, Polly, Rekognition, Personalize, and Textract in greater detail. You'll also delve into other AWS AI/ML services through case studies. After you're done with this course, you'll be able to describe the use cases of these services and have a general overview of how to combine multiple AWS AI/ML services to work within a single application. Moreover, you'll be a step closer to preparing for the AWS Certified Machine Learning – Specialty certification exam
12 videos | 1h 13m has Assessment available Badge
AWS Certified Machine Learning: Problem Formulation & Data Collection
In order to build machine learning (ML) applications, it is important to formulate problems and collect data. Examine the choice between the online and on-premise implementation of the problem formulation and data collection phases through this course. Explore how SageMaker algorithms help complete ML projects efficiently and work with various approaches that implement recommender systems. You'll also investigate how and when to use AWS data storage services and learn more about analyzing dataset readiness. After taking this course, you'll be able to describe the advantages and disadvantages of using the cloud over an on-premise solution and define the problem formulation and success evaluation processes. You'll also be a step closer to preparing for the AWS Certified Machine Learning – Specialty certification exam.
12 videos | 42m has Assessment available Badge
AWS Certified Machine Learning: Data Preparation & SageMaker Security
Building successful machine learning (ML) applications require the transformation of raw data, such that it meets the requirements of individual ML algorithms. Explore how to prepare data using Amazon SageMaker and S3 and create security services for this data through this course. Start by delving deeper into summary statistics and visualization​ before moving on to security best practices for Amazon SageMaker. You'll also examine Amazon CloudWatch and Amazon CloudTrail in greater detail. After taking this course, you'll have a solid grasp of various data formats, data security practices, and monitoring and alerting services used in SageMaker. You'll also have the knowledge to prepare data for machine learning and take a step further in your preparation for the AWS Certified Machine Learning – Specialty certification exam.
12 videos | 42m has Assessment available Badge
AWS Certified Machine Learning: Model Training & Evaluation
Training a machine learning (ML) model is the first step of many when developing ML applications that enable businesses to discover new trends within broad and diverse data sets. Use this course to learn more about SageMaker's built-in algorithm and perform model training, evaluation, monitoring, tuning, and deployment using Amazon Elastic Compute Cloud (EC2) instances. Begin by examining factorization machines and the selection of EC2 instances. Next, you'll discover how to perform model training, evaluation, and deployment. You'll wrap up the course by exploring the steps involved in tuning and testing ML models. After you're done with this course, you'll have the skills and knowledge to successfully train and evaluate a model, further preparing you for the AWS Certified Machine Learning – Specialty certification exam.
12 videos | 35m has Assessment available Badge
AWS Certified Machine Learning: AI Services & SageMaker Applications
Integrating AWS AI services and SageMaker with any machine learning (ML) or deep learning project is a great way to enhance its capabilities. Through this course, learn more about the additional AWS AI Services that are ready to use in the form of direct API without the need to train any ML models and dive deeper into more SageMaker functionality. Get familiar with AWS AI services that can be fully integrated into your applications in minutes. This course will also introduce you to some pre-trained algorithms in SageMaker for building high-performance natural language processing (NLP) and computer vision apps using fine-tuning techniques. After completing this course, you'll be able to identify several AI services that can be used as APIs in AWS and describe SageMaker's extensive capabilities in handling text and images. You'll also be a step closer to preparing for the AWS Certified Machine Learning – Specialty certification exam.
12 videos | 54m has Assessment available Badge
SHOW MORE
FREE ACCESS

COURSES INCLUDED

TensorFlow: Introduction to Machine Learning
Explore the concept of machine learning in TensorFlow, including TensorFlow installation and configuration, the use of the TensorFlow computation graph, and working with building blocks.
19 videos | 1h 49m has Assessment available Badge
TensorFlow: Simple Regression & Classification Models
Explore how to how to build and train the two most versatile and ubiquitous types of deep learning models in TensorFlow.
19 videos | 1h 44m has Assessment available Badge
TensorFlow: Deep Neural Networks & Image Classification Using Estimators
Discover how to apply deep learning techniques to images, and how to leverage TensorFlow estimators in building image classification models.
15 videos | 1h 17m has Assessment available Badge
TensorFlow: Convolutional Neural Networks for Image Classification
Examine how to work with Convolutional Neural Networks, and discover how to leverage TensorFlow to build custom CNN models for working with images.
17 videos | 1h 29m has Assessment available Badge
TensorFlow: Word Embeddings & Recurrent Neural Networks
Explore how to model language and text with word embeddings and how to use those embeddings in Recurrent Neural Networks. Leveraging TensorFlow to build custom RNN models is also covered.
11 videos | 47m has Assessment available Badge
TensorFlow: Sentiment Analysis with Recurrent Neural Networks
Discover how to construct neural networks for sentiment analysis. How to generate word embeddings on training data and use pre-trained word vectors for sentiment analysis is also covered.
12 videos | 1h 2m has Assessment available Badge
TensorFlow: K-means Clustering
Discover how to differentiate between supervised and unsupervised machine learning techniques. The construction of clustering models and their application to classification problems is also covered.
15 videos | 1h 5m has Assessment available Badge
TensorFlow: Building Autoencoders
Explore how to perform dimensionality reduction using powerful unsupervised learning techniques such as Principal Components Analysis and autoencoding.
10 videos | 50m has Assessment available Badge
SHOW MORE
FREE ACCESS

COURSES INCLUDED

Model Management: Building Machine Learning Models & Pipelines
In this course, you will explore various approaches to building and implementing machine learning (ML) models and pipelines and will learn how to manage classification and regression problems. Begin this 11-video course by taking a look at the differences between ML models and ML algorithms. You will go on to learn about the different types of ML models and will then explore the approaches to developing and building them. Discover how to create and save ML models by using scikit-learn, and learn to recognize the various models that can be used to manage classification and regression problems. Explore how to build ML pipelines and then examine the prominent tools that can be used. You will learn how to implement scikit-learn ML pipelines, and in the final tutorial, learners will recall the steps involved in iterative machine learning model management and the associated benefits. In the concluding exercise, you will be asked to build ML models and pipelines by using scikit-learn.
11 videos | 31m has Assessment available Badge
Model Management: Building & Deploying Machine Learning Models in Production
In this 14-video course, learners can explore hyperparameter tuning, versioning machine learning (ML) models, and preparing and deploying ML models in production. Begin the course by describing hyperparameter and the different types of hyperparameter tuning methods, and also learn about grid search hyperparameter tuning. Next, learn to recognize the essential aspects of a reproducible study; list ML metrics that can be used to evaluate ML algorithms; learn about the relevance of versioning ML models, and implement Git and DVC machine learning model versioning. Describe ModelDB architecture used for managing ML models, and list the essential features of the model management framework. Observe how to set up Studio.ml to manage ML models and create ML models in production, and examine Flask machine learning model setup for production. Explore how to deploy machine or deep learning models in production. The exercise involves tuning hyperparameter with grid search, versioning ML models by using Git, and creating ML models for production.
14 videos | 1h 1m has Assessment available Badge
Machine & Deep Learning Algorithms: Imbalanced Datasets Using Pandas ML
The imbalanced-learn library that integrates with Pandas ML (machine learning) offers several techniques to address the imbalance in datasets used for classification. In this course, explore oversampling, undersampling, and a combination of techniques. Begin by using Pandas ML to explore a data set in which samples are not evenly distributed across target classes. Then apply the technique of oversampling with the RandomOverSampler class in the imbalanced-learn library; build a classification model with oversampled data; and evaluate its performance. Next, learn how to create a balanced data set with the Synthetic Minority Oversampling Technique and how to perform undersampling operations on a data set by applying Near Miss, Cluster Centroids, and Neighborhood cleaning rules techniques. Next, look at ensemble classifiers for imbalanced data, applying combination samplers for imbalanced data, and finding correlations in a data set. Learn how to build a multilabel classification model, explore the use of principal component analysis, or PCA, and how to combine use of oversampling and PCA in building a classification model. The exercise involves working with imbalanced data sets.
12 videos | 1h 28m has Assessment available Badge
Technology Landscape & Tools for Data Management
This Skillsoft Aspire course explores various tools you can utilize to get better data analytics for your organization. You will learn the important factors to consider when selecting tools, velocity, the rate of incoming data, volume, the storage capacity or medium, and the diversified nature of data in different formats. This course discusses the various tools available to provide the capability of implementing machine learning, deep learning, and to provide AI capabilities for better data analytics. The following tools are discussed: TensorFlow, Theano, Torch, Caffe, Microsoft cognitive tool, OpenAI, DMTK from Microsoft, Apache SINGA, FeatureFu, DL4J from Java, Neon, and Chainer. You will learn to use SCIKIT-learn, a machine learning library for Python, to implement machine learning, and how to use machine learning in data analytics. This course covers how to recognize the capabilities provided by Python and R in the data management cycle. Learners will explore Python; the libraries NumPy, SciPy, Pandas to manage data structures; and StatsModels. Finally, you will examine the capabilities of machine learning implementation in the cloud.
9 videos | 29m has Assessment available Badge
Machine Learning & Deep Learning Tools in the Cloud
This Skillsoft Aspire course explores the machine learning solutions provided by AWS (Amazon Web Services) and Microsoft, and how to compare the tools and frameworks that can be used to implement machine learning, and deep learning. You will learn to become efficient in data wrangling by building a foundation with data tools and technology. This course explores Machine Learning Toolkit provided by Microsoft, which provides various algorithms and applies artificial intelligence and deep learning. Learners will also examine Distributed Machine Learning Toolkit, which is hosted on Azure. Next, explore the machine learning tools provided by AWS, including DeepRacer and DeepLens which provide deep learning capabilities. You will learn how to use Amazon SageMaker, and how Jupyter notebooks are used to test machine learning algorithms. You will learn about other AWS tools, including TensorFlow, Apache MXNet, and Deep Learning AMI. Finally, learn about different tools for data mining and analytics, and how to build and process a data pipeline provided by KNIME (Konstanz Information Miner).
9 videos | 25m has Assessment available Badge
ML Algorithms: Multivariate Calculation & Algorithms
Learners can explore the role of multivariate calculus in machine learning (ML), and how to apply math to data science, ML, and deep learning, in this 10-video course examining several ML algorithms, and showing how to identify different types of variables. First, learners will observe how to implement multivariate calculus, derive function representations of calculus, and utilize differentiation and linear algebra to optimize ML algorithms. Next, you will examine how to use advanced calculus and discrete optimization, to implement robust, and high-performance ML applications. Then you will learn to use R and Python to implement multivariate calculus for ML and data science. You will learn about partial differentiation, and its application on vector calculus and differential geometry, and the use of product rule and chain rule. You will examine the role of linear algebra in ML, and learn to classify the techniques of optimization by using gradient and Jacobian matrix. Finally, you will explore Taylor's theorem and the conditions for local minimum.
10 videos | 42m has Assessment available Badge
ML Algorithms: Machine Learning Implementation Using Calculus & Probability
This course explores the use of multivariate calculus, derivative function representations, differentiation, and linear algebra to optimize ML (machine learning) algorithms. In 10 videos, learners will observe how to use probability theory to enable prediction and other analytical types in ML, including the role of probability in chain rule and Bayes' rule. First, you will explore the concepts of variance, covariance, and random vectors, before examining Likelihood and Posteriori estimation. Next, learn how to use estimation parameters to determine the best value of model parameters through data assimilation, and how it can be applied to ML. You will explore the role of calculus in deep learning, and the importance of derivatives in deep learning. Continue by learning optimization functions such as gradient descent, and whether to increase or decrease weight to maximize or minimize some metrics. You will learn to implement differentiation and integration in R and how to implement calculus derivatives, integrals using Python. Finally, you will examine the use of limits and series expansion in Python.
10 videos | 34m has Assessment available Badge
NLP for ML with Python: NLP Using Python & NLTK
This course explores how natural language processing (NLP) is used for machine learning, and examines the benefits and challenges of NLP when creating an application that can essentially understand human language. In its 13 videos, learners will be shown the essential components of NLP, including parsers, corpus, and corpus linguistic, as well as how to implement regular expressions. This course goes on to examine tokenization, a way to separate a piece of text into smaller units, and then illustrates different tokenization use cases with NLTK (Natural Language Toolkit). You will learn to use stop words using libraries and the NLTK. This course demonstrates how to implement regular expressions in Python to build NLP-powered applications. Learners will examine the list of Python NLP libraries along with their essential capabilities, including NLTK, Gensim, CoreNLP, spaCy and PyNLPl. You will learn to set up and configure an NLTK environment to illustrate how to process raw text. Finally, this course demonstrates the use of filtering stopwords in a tokenized sentence using NLTK.
13 videos | 1h 7m has Assessment available Badge
NLP for ML with Python: Advanced NLP Using spaCy & Scikit-learn
This 11-video course explores NLP (natural language processing) by discussing differences between stemming, a process of reducing a word to its word stem, and lemmatization, or returning the base or dictionary form of a word. Key concepts covered here include how to extract synonyms, antonyms, and topic, and how to process and analyze texts for machine learning. You will learn to use Apache's Natural Language Toolkit (NLTK), spaCy, and Scikit-learn to implement text classification and sentiment analysis. This course demonstrates the use of advanced calculus and discrete optimization to implement robust and high-performance machine learning applications. You will learn to use R and Python to implement multivariate calculus for machine learning and data science, then examine the role of probability, variance, and random vectors in implementing machine learning processes and algorithms. Finally, you will examine the role of calculus in deep learning; watch a demonstration of how to apply calculus and differentiation using R and Python libraries; see how to implement calculus, derivatives, and integrals using Python; and learn uses of limits and series expansions in Python.  
11 videos | 44m has Assessment available Badge
Linear Algebra and Probability: Fundamentals of Linear Algebra
Explore the fundamentals of linear algebra, including characteristics and its role in machine learning, in this 13-video course. Learners can examine important concepts associated with linear algebra, such as the class of spaces, types of vector space, vector norms, linear product vector and theorems, and various operations that can be performed on matrix. Key concepts examined in this course include important classes of spaces associated with linear algebra; features of vector spaces and the different types of vector spaces and their application in distribution and Fourier analysis; and inner product spaces and the various theorems that are applied on inner product spaces. Next, you will learn how to implement vector arithmetic by using Python; learn how to implement vector scalar multiplication with Python; and learn the concept and different types of vector norms. Finally, learn how to implement matrix-matrix multiplication, matrix-vector multiplication, and matric-scalar multiplication by using Python; and learn about matrix decomposition and the roles of Eigenvectors and Eigenvalues in machine learning.
13 videos | 1h 45m has Assessment available Badge
Linear Algebra & Probability: Advanced Linear Algebra
Learners will discover how to apply advanced linear algebra and its principles to derive machine learning implementations in this 14-video course. Explore PCA, tensors, decomposition, and singular-value decomposition, as well as how to reconstruct a rectangular matrix from singular-value decomposition. Key concepts covered here include how to use Python libraries to implement principal component analysis with matrix multiplication; sparse matrix and its operations; tensors in linear algebra and arithmetic operations that can be applied; and how to implement Hadamard product on tensors by using Python. Next, learn how to calculate singular-value decomposition and reconstruct a rectangular matrix; learn the characteristics of probability applicable in machine learning; and study probability in linear algebra and its role in machine learning. You will learn types of random variables and functions used to manage random numbers in probability; examine the concept and characteristics of central limit theorem and means and learn common usage scenarios; and examine the concept of parameter estimation and Gaussian distribution. Finally, learn the characteristics of binomial distribution with real-time examples.
14 videos | 1h 48m has Assessment available Badge
Implementing Deep Learning: Practical Deep Learning Using Frameworks & Tools
Explore the concept of deep learning, including a comparison between machine learning and deep learning (ML/DL) in this 12-video course. Learners will examine the various phases of ML/DL workflows involved in building deep learning networks; recall the essential components of building and applying deep learning networks; and take a look at the prominent frameworks that can be used to simplify building ML/DL applications. You will then observe how to use the Caffe2 framework for implementing recurrent convolutional neural networks; write PyTorch code to generate images using autoencoders; and implement deep neural networks by using Python and Keras. Next, compare the prominent platforms and frameworks that can be used to simplify deep learning implementations; identify and select the best fit frameworks for prominent ML/DL use cases; and learn how to recognize challenges and strategies associated with debugging deep learning networks and algorithms. The closing exercise involves identifying the steps of ML workflow, deep learning frameworks, and strategies for debugging deep learning networks.
12 videos | 1h 3m has Assessment available Badge
Implementing Deep Learning: Optimized Deep Learning Applications
This 11-video course explores the concepts of computational graphics, interfaces for programming graphics processing units (GPUs), and TensorFlow Extended and its pipeline components. Learners discover features and elements that should be considered for machine learning when building deep learning (DL) models, as well as hyperparameters that can be tuned to optimize DL models. Begin by examining the concept of computational graphs and recognize essential computational graph operations used in implementing DL. Then learn to list prominent processors with specialized purpose and architectures used in implementing DL. Recall prominent interfaces for programming GPUs with focus on Compute Unified Device Architecture (CUDA) and OpenCL, and then take a look at TensorFlow Extended (TFX) and TFX pipeline components for machine learning pipelines. Discover how to setup the TFX environment; use the ExampleGen and StatisticsGen TFX pipeline components to build pipelines; work with TensorFlow Model analysis; and explore the practical considerations for DL build and train. Finally, recall essential hyperparameters of DL algorithms that can be tuned to optimize DL models. The concluding exercise involves optimizing DL applications.
11 videos | 46m has Assessment available Badge
Refactoring ML/DL Algorithms: Techniques & Principles
Explore techniques of refactoring code, the process of changing a computer program source code without modifying its external functional behavior, in this 14-video course exploring design patterns and challenges in refactoring code. First, learn the essential machine learning principles when planning code, including how to identify what instead of how, and to look for consistencies. You will then learn to recognize the causes of technical debts that contribute to challenges in existing code. Next, you will learn code refactoring techniques and types of processes that you can use to eliminate deficiencies in the code. This course demonstrates the refactoring capabilities provided by PyCharm to refactor Python code, and the steps involved in optimizing Python code. You will learn static code analysis of Python by using Prospector, refactoring code to ensure backward compatibility, and the role of design patterns in code refactoring, and how to use rope to refactor Python code. Finally, you will learn to recall the prominent antipatterns that potentially complicate code and code refactoring.
14 videos | 1h 11m has Assessment available Badge
Refactoring ML/DL Algorithms: Refactor Machine Learning Algorithms
This course explores how to select the appropriate algorithm for machine learning (ML), the principles of designing machine learning algorithms, and how to refactor machine ML code. In 11 videos, you will learn the steps involved in designing ML algorithms. The complexity in the algorithm is huge, and learners will observe how to write iterative and incremental code, and how to apply refactoring to it. This course next examines the types of ML problems, and classifies it into four categories, and how to classify machine learning algorithms. You will learn how to refactor existing ML code written in Python, and to launch and use PyCharm IDE. This course also demonstrates how to use PyCharm IDE on a specific project learners will create. You will examine the problems associated with technical debt in ML implementation, and how to manage it. Then you will learn to use SonarQube to build code coverage for machine learning code that are written in Python. Finally, this course examines automatic clone recommendations for refactoring, based on the present and the past.
11 videos | 1h 2m has Assessment available Badge
ML/DL Best Practices: Machine Learning Workflow Best Practices
This 12-video course explores essential phases of machine learning (ML), deep learning workflows, and data workflows that can be used to develop ML models. You will learn the best practices to build robust ML systems, and examine the challenges of debugging models. Begin the course by learning the importance of the data structure for ML accuracy and feature extraction that is wanted from the data. Next, you will learn to use checklists to develop and implement end-to-end ML and deep learning workflows and models. Learners will explore what factors to consider when debugging, and how to use flip points to debug a trained machine model. You will learn to identify and fix issues associated with training, generalizing, and optimizing ML models. This course demonstrates how to use the various phases of machine learning and data workflows that can be used to achieve key milestones of machine learning projects. Finally, you will learn high level-deep learning strategies, and the common design choices for implementing deep learning projects.
12 videos | 57m has Assessment available Badge
ML/DL Best Practices: Building Pipelines with Applied Rules
This course examines how to troubleshoot deep learning models, and build robust deep learning solutions. In 13 videos, learners will explore the technical challenges of managing diversified kinds of data with ML (machine learning), and how to work with its challenges. This course uses case studies to demonstrate the impact of adopting deep learning best practices, and how to deploy deep learning solutions in an enterprise. First, you will learn the best approach for architecting, building, and implementing scalable ML services, and rules to build ML pipelines into applications. Then learners will examine critical challenges and patterns associated with deploying deep learning solutions in an enterprise. You will learn to use feature engineering to apply rules and features in an application, and how to use feature engineering to manage slowed growth, training-serving skew, optimization refinement, and complex models in ML application management. Finally, you will examine the checklists that are recommended for project managers to prepare and adopt when implementing machine learning.
13 videos | 1h 8m has Assessment available Badge
Enterprise Services: Enterprise Machine Learning with AWS
This course explores features and operational benefits of using a cloud platform to implement machine learning (ML). In this 15-video course, learners observe how to manage diversified kinds of data, and the exponential growth of unstructured and structured data. First, you will examine ML workflow and compare differences between ML model development and traditional enterprise software development. Then you will learn how to use the ML services provided by AWS (Amazon Web Services) to implement end-to-end ML solutions at scale. Next, learners will examine AWS ML tools, services, and capabilities, the architecture, and internal components in Amazon SageMaker. You will continue by learning how to use Amazon Machine Learning Console to create data sources, implement ML models, and to use the models to facilitate predictions. This course compares the ML implementation scenarios and solutions in AWS, Microsoft Azure, and Google Cloud, and helps learners identify the best fit for any given scenario. Finally, you learn to use SageMaker and SageMaker Neo to create, train, tune, and deploy ML models anywhere.
15 videos | 1h 19m has Assessment available Badge
Enterprise Services: Machine Learning Implementation on Microsoft Azure
Explore the features and operational benefits of using a cloud platform to implement ML (machine learning) by using Microsoft Azure and Amazon SageMaker, in this 14-video course. First, you will learn how to use Microsoft Azure ML tools, services, and capabilities, and  how to examine MLOps (machine learning and operations) to manage, deploy, and monitor models for quality and consistency. You will create Azure Machine Learning workspaces, and learn to configure development environments, build, and manage ML pipelines, to work with data sets, train models, and projects. You will develop and deploy predictive analytic solutions using the Azure Machine Learning Service visual interface, and work with Azure Machine Learning R Notebooks to fit and publish models. You will learn to enable CI/CD (continuous integration and continuous delivery) with Azure Pipelines, and examine ML tools in AWS (Amazon Web Services) SageMaker, and how to use Amazon's ML console. Finally, you will learn to track code from Azure Repos or GitHub, trigger release pipelines, and automate ML deployments by using Azure Pipelines.
14 videos | 1h 18m has Assessment available Badge
Enterprise Services: Machine Learning Implementation on Google Cloud Platform
This course explores the GCP (Google Cloud Platform) machine learning (ML) tools, services, and capabilities, and different stages in the Google Cloud Platform machine learning workflow. This 14-video course demonstrates a high-level overview of different stages in Google Cloud Platform machine learning workflow. You will examine the features of BigQuery, and how to use Big Query ML to create and evaluate a binary logistic regression model using Big Query ML statement. Next, learners will observe how to use the Google AI Platform and Google Cloud AutoML components and features used for training, evaluating, and deploying ML models. You will learn to train models by using the built-in linear learner algorithm, submit jobs with GCloud and Console, create and evaluate binary logistic regression models, and set up and work with Cloud Datalab. You will learn to use AutoML Tables to work with data sets, to train machine learning models for predictions. Finally, you will work with Google Cloud AutoML Natural Language to create custom ML models for content category classification.
14 videos | 1h 6m has Assessment available Badge
Advanced Reinforcement Learning: Principles
This 11-video course delves into machine learning reinforcement learning concepts, including terms used to formulate problems and workflows, prominent use cases and implementation examples, and algorithms. Learners begin the course by examining what reinforcement learning is and the terms used to formulate reinforcement learning problems. Next, look at the differences between machine learning and reinforcement learning by using supervised and unsupervised learning. Explore the capabilities of reinforcement learning, by looking at use cases and implementation examples. Then learners will examine reinforcement learning workflow and reinforcement learning terms; reinforcement learning algorithms and their features; and the Markov Decision Process, its variants, and the steps involved in the algorithm. Take a look at the Markov Reward Process, focusing on value functions for implementing the Markov Reward Process, and also the capabilities of the Markov Decision Process toolbox and the algorithms that are implemented within it. The concluding exercise involves recalling reinforcement learning terms, describing implementation approaches, and listing the Markov Decision Process algorithms.
11 videos | 1h 17m has Assessment available Badge
Advanced Reinforcement Learning: Implementation
In this 11-video course, learners can examine the role of reward and discount factors in reinforcement learning, as well as the multi-armed bandit problem and approaches to solving it for machine learning. You will begin by learning how to install the Markov Decision Policy (MDP) toolbox and implement the Discounted Markov Decision Process using the policy iteration algorithm. Next, examine the role of reward and discount factors in reinforcement learning, and the multi-armed bandit problem and solutions. Learn about dynamic programming, policy evaluation, policy iteration, value iteration, and characteristics of Bellman equation. Then learners will explore reinforcement learning agent components and applications; work with reinforcement learning agents using Keras and OpenAI Gym; describe reinforcement learning algorithms and the reinforcement learning taxonomy defined by OpenAI; and implement deep Q-learning with Keras. Finally, observe how to train deep neural networks (DNN) with reinforcement learning for time series forecasting. In the closing exercise, you will recall approaches for resolving the multi-armed bandit problem, list reinforcement learning agent components, and implement deep Q-learning by using Keras and OpenAI Gym.
11 videos | 1h 38m has Assessment available Badge
Applied Deep Learning: Unsupervised Data
This 11-video course explores the concept of deep learning and implementation of deep learning-based frameworks for natural language processing (NLP) and audio data analysis. Discover the architectures of recurrent neural network (RNN) that can be used in modeling NLP, and the challenges of unsupervised learning and the approach of using deep learning from the perspective of common unsupervised feature machine learning. First, examine the prominent statistical classification models and compare generative classifiers with discriminative classifiers; then recall different types of generative models, with focus on generative adversarial network, variational autoencoders, and flow-based generative model. Learn about setting up and working with PixelCNN; explore differences between multilayer perception (MLP), convolutional neural network (CNN), and RNN. Explore the essential capabilities and variants of ResNet that can be used for computer vision and deep learning. Finally, take a look at encoders in neural networks and compare the capabilities of standard autoencoders and variational autoencoders. The concluding exercise involves recalling RNN architecture that can be used in modeling NLP, variants of ResNet, and setting up PixelCNN.
11 videos | 1h 32m has Assessment available Badge
Applied Deep Learning: Generative Adversarial Networks and Q-Learning
Learners will explore variations of generative adversarial network (GAN) and the challenges associated with its models, as well as the concept of deep reinforcement learning, its application for machine learning, and how it differs from deep learning, in this 11-video course. Begin by implementing autoencoders with Keras and Python; implement GAN and the role of Generator and Discriminator; and implement GAN Discriminator and Generator with Python and Keras and build Discriminator for training models. Discover the challenges of working with GAN models and explore the concept of deep reinforcement learning and its application in the areas of robotics, finance, and health care. Compare deep reinforcement learning with deep learning, and examine challenges associated with their implementations. Learn about the basic concepts of reinforcement learning, as well as the concept of deep Q-learning and implementing deep Q-learning. Then implement deep Q-learning in Python by using Keras and OpenAI Gym. The concluding exercise involves recalling variations of GAN, implementing GAN Discriminator and Generator using Python, and implementing deep Q-learning in Python by using Keras and OpenAI Gym.
11 videos | 49m has Assessment available Badge
Enterprise Architecture: Architectural Principles & Patterns
In this 18-video course, learners can explore software architecture concepts, including the view model, consumer-driven contracts, architectural patterns, and architectural styles and solution patterns used to manage common machine learning issues. Begin by examining software architecture and the benefits it provides, and then the principles that should be followed when designing architecture for applications. You will discover the 4+1 view model and associated views, and learn to recognize software architectures, and the principles of developing enterprise architecture. Recall architectural principles for business, data, and technology, and the fundamental principles guiding service-oriented architecture (SOA) and use of the SOA maturity model. Next, explore serverless architecture; Backend-as-a-Service; the features of evolutionary architecture; and learn to recognize benefits of documenting architecture. Examine the structure of a software p